4.7 Article

Fracture toughness (Mode I) characterization of SiO2 nanoparticle filled basalt/epoxy filament wound composite ring with split-disk test method

期刊

COMPOSITES PART B-ENGINEERING
卷 119, 期 -, 页码 114-124

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.compositesb.2017.03.045

关键词

Basalt fiber reinforcement; SiO2 nanoparticle; Fracture toughness; Nanocomposite; Filament wound composite; Crack branching

资金

  1. Selcuk University Scientific Research Projects (B.A.P) [11101030]

向作者/读者索取更多资源

Matrix cracking which is the major initial form of damage in fiber reinforced polymer composites plays significant role in determining the fracture toughness. The fast crack propagation in polymer matrix causes to decrease the fracture toughness of fiber reinforced polymer (FRP) composite. In order to retard the fast crack propagation in polymer matrix and provide to increase of the fracture toughness of FRP composite, the polymer matrix of FRP composite is modified by filling the different kinds of nano particles. In such a way, the crack propagation leads to retard and dissipate the stress concentration affected to form the fiber cracks along of fibers in composite structure. In this study, basalt fiber was used as reinforcement material in +/-[55]6 filament wound ring composite for creating the alternative to carbon, kevlar and glass fibers, to contribute to the research studies and literature. SiO2 nanoparticles that provides to form the effects of fracture toughness mechanism based on the effect of retarding crack propagation were filled into epoxy matrix to increase the mechanical properties and fracture toughness of +/-[55]6 filament wound BFR/Epoxy ring composite. The split-disk tensile tests of single edge notched and un-notched +/- 155]6 filament wound BFR/Epoxy ring composite specimens were conducted to determine the mechanical properties and mode I fracture toughness. SiO2 nanoparticle addition into epoxy matrix of +/-[55]6 filament wound BFR/Epoxy ring composites has given the results of hoop tensile stress within the range of 27.7-30.3%. The fracture toughness of composite ring specimen was specified by ASTM E 399-12E3 by adapting to the directed mode I crack propagation and compared with each other. An effective increase in mode I fracture toughness of 43%-50% was obtained at 4 wt% addition level of SiO2 nanoparticles. The crack branching in epoxy matrix provided by SiO2 nanoparticle, matrix cracking, debonding, delamination and fiber breakage failures has been observed via microscope and SEM analysis. (C) 2017 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据