4.7 Article

Chemical Adsorption and Physical Confinement of Polysulfides with the Janus-faced Interlayer for High-performance Lithium-Sulfur Batteries

期刊

SCIENTIFIC REPORTS
卷 7, 期 -, 页码 -

出版社

NATURE RESEARCH
DOI: 10.1038/s41598-017-18108-0

关键词

-

资金

  1. Thailand Research Fund
  2. Vidyasirimedhi Institute of Science and Technology [RSA5880043]

向作者/读者索取更多资源

We design the Janus-like interlayer with two different functional faces for suppressing the shuttle of soluble lithium polysulfides (LPSs) in lithium-sulfur batteries (LSBs). At the front face, the conductive functionalized carbon fiber paper (f-CFP) having oxygen-containing groups i.e., -OH and -COOH on its surface was placed face to face with the sulfur cathode serving as the first barrier accommodating the volume expansion during cycling process and the oxygen-containing groups can also adsorb the soluble LPSs via lithium bonds. At the back face, a crystalline coordination network of [Zn(H2PO4)(2)(TzH)(2)](n) (ZnPTz) was coated on the back side of f-CFP serving as the second barrier retarding the left LPSs passing through the front face via both physical confinement and chemical adsorption (i.e. Li bonding). The LSB using the Janus-like interlayer exhibits a high reversible discharge capacity of 1,416 mAh g(-1) at 0.1C with a low capacity fading of 0.05% per cycle, 92% capacity retention after 200 cycles and ca. 100% coulombic efficiency. The fully charged LSB cell can practically supply electricity to a spinning motor with a nominal voltage of 3.0V for 28 min demonstrating many potential applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据