4.7 Article

Shape-based separation of microalga Euglena gracilis using inertial microfluidics

期刊

SCIENTIFIC REPORTS
卷 7, 期 -, 页码 -

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41598-017-10452-5

关键词

-

资金

  1. ImPACT Program of the Council of Science, Technology and Innovation (Cabinet office, Government of Japan)
  2. Burroughs Wellcome Fund

向作者/读者索取更多资源

Euglena gracilis (E. gracilis) has been proposed as one of the most attractive microalgae species for biodiesel and biomass production, which exhibits a number of shapes, such as spherical, spindle-shaped, and elongated. Shape is an important biomarker for E. gracilis, serving as an indicator of biological clock status, photosynthetic and respiratory capacity, cell-cycle phase, and environmental condition. The ability to prepare E. gracilis of uniform shape at high purities has significant implications for various applications in biological research and industrial processes. Here, we adopt a label-free, high-throughput, and continuous technique utilizing inertial microfluidics to separate E. gracilis by a key shape parameter-cell aspect ratio (AR). The microfluidic device consists of a straight rectangular microchannel, a gradually expanding region, and five outlets with fluidic resistors, allowing for inertial focusing and ordering, enhancement of the differences in cell lateral positions, and accurate separation, respectively. By making use of the shape-activated differences in lateral inertial focusing dynamic equilibrium positions, E. gracilis with different ARs ranging from 1 to 7 are directed to different outlets.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据