4.8 Article

Openmouthed β-SiC hollow-sphere with highly photocatalytic activity for reduction of CO2 with H2O

期刊

APPLIED CATALYSIS B-ENVIRONMENTAL
卷 206, 期 -, 页码 158-167

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.apcatb.2017.01.028

关键词

beta-SiC; Hollow spheres; Photocatalysis; CO2 reduction

资金

  1. National Natural Science Foundation of China [U1305242, 21673042, 21673043]
  2. Technology Project of Education Office of Fujian Province of PR China [JAT160045]
  3. National Basic Research Program of China (973 Program) [2014CB260410]
  4. Collaborative Innovation Center of Clean Coal Gasification Technology of Fujian [XK1401]

向作者/读者索取更多资源

A novel hollow spherical 3D structure of beta-SiC with an open mouth was successfully fabricated by an environmentally friendly approach starting from ethylsilicate interaction with the P123 and glucose. The proposed growth mechanism of SiC hollow spheres was revealed step by step with SEM and XRD. When the as-prepared SiC was applied for the photocatalytic reduction of CO2 with pure water, it was found to be highly active for the conversion CO2 into mainly CH4 hydrocarbon products due to its unique electronic structure, hollow morphology and high BET surface area. Moreover, the photocatalytic activity of the hollow spherical SiC can be greatly improved by loading Pt cocatalyst. The optimal 2.0 wt% Pt loading led to a stable CH4 evolution as high as 16.8 mu mol/g/h (or 376.4 mu l/g/h) with the simulated solar light irradiation, which is higher than that of many reported metal oxides (Pt/TiO2, CdS/WO3, Zn2GeO4, CeO2 and g-C3N4/NaNbO3 et al.) under similar experimental conditions. This work provides a new strategy for the architecture of thermally and chemically stable non-metallic carbide with unique hollow spherical structure to be a potential nonmetallic photocatalyst for CO2 reduction into CH4. (C) 2017 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据