4.3 Article

Biolens Behavior of RBCs Under Optically-Induced Mechanical Stress

期刊

CYTOMETRY PART A
卷 91A, 期 5, 页码 527-533

出版社

WILEY
DOI: 10.1002/cyto.a.23085

关键词

red blood cells; digital holography; optical tweezers; biolens effect; cell elasticity; Zernike polynomials; lens aberration

向作者/读者索取更多资源

In this work, the optical behavior of Red Blood Cells (RBCs) under an optically-induced mechanical stress was studied. Exploiting the new findings concerning the optical lens-like behavior of RBCs, the variations of the wavefront refracted by optically-deformed RBCs were further investigated. Experimental analysis have been performed through the combination of digital holography and numerical analysis based on Zernike polynomials, while the biological lens is deformed under the action of multiple dynamic optical tweezers. Detailed wavefront analysis provides comprehensive information about the aberrations induced by the applied mechanical stress. By this approach it was shown that the optical properties of RBCs in their discocyte form can be affected in a different way depending on the geometry of the deformation. In analogy to classical optical testing procedures, optical parameters can be correlated to a particular mechanical deformation. This could open new routes for analyzing cell elasticity by examining optical parameters instead of direct but with low resolution strain analysis, thanks to the high sensitivity of the interferometric tool. Future application of this approach could lead to early detection and diagnosis of blood diseases through a single-step wavefront analysis for evaluating different cells elasticity. (c) 2017 International Society for Advancement of Cytometry

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据