4.8 Article

Porous Iron-Carboxylate Metal-Organic Framework: A Novel Bioplatform with Sustained Antibacterial Efficacy and Nontoxicity

期刊

ACS APPLIED MATERIALS & INTERFACES
卷 9, 期 22, 页码 19248-19257

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsami.7b04810

关键词

MOF; drug delivery; antibacterial; biocompatibility; osteogenic differentiation

资金

  1. National Natural Science Foundation of China [51422102, 81271715]
  2. National Key Research and Development Program of China [2016YFC1100600, 2016YFC1100604]
  3. Shenzhen Peacock Program [1108110035863317]

向作者/读者索取更多资源

Sustained drug release plays a critical role in targeting the therapy of local diseases such as bacterial infections. In the present work, porous iron-carboxylate metal-organic framework [MOF-53(Fe)] nanoparticles (NPs) were designed to entrap the vancomycin (Van) drugs. This system exhibited excellent chemical stability under acidic conditions (pH 7.4, 6.5, and 5.5) and much higher drug-loading capability because of the high porosity and large surface area of MOF NPs. The results showed that the drug-loading ratio of Van could reach 20 wt % and that the antibacterial ratio of the MOF-53(Fe)/Van system against Staphylococcus aureus could reach up to 90%. In addition, this MOF-53(Fe)/Van system exhibited excellent biocompatibility because of its chemical stability and sustained release of iron ions. Hence, these porous MOF NPs are a promising bioplatform not only for local therapy of bacterial infections but also for other biomedical therapies for tissue regeneration.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据