4.8 Article

Fabrication of Ag-Cu2O/Reduced Graphene Oxide Nanocomposites as Surface-Enhanced Raman Scattering Substrates for in Situ Monitoring of Peroxidase-Like Catalytic Reaction and Biosensing

期刊

ACS APPLIED MATERIALS & INTERFACES
卷 9, 期 22, 页码 19074-19081

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsami.7b02149

关键词

surface-enhanced Raman scattering; peroxidase-like catalysis; fingerprints; glucose; biosensing; detection

资金

  1. National Natural Science Foundation of China [21473068, 21327803, 21611130173, 21603021, 81572082]

向作者/读者索取更多资源

Highly sensitive biosensors are essential in medical diagnostics, especially for monitoring the state of an individuals disease. An ideal way to achieve this objective is to analyze human sweat secretions by noninvasive monitoring. Due to low concentrations of target analytes in human secretions, fabrication of ultrasensitive detection devices is a great challenge. In this work, Ag-Cu2O/reduced graphene oxide (rGO) nanocomposites were prepared by a facile two-step in situ reduction procedure at room temperature. Ag-Cu2O/rGO nanocomposites possess intrinsic peroxidase-like activity and rapidly catalyze oxidation of the peroxidase substrate 3,3',5,5'-tetramethylbenzidine (TMB) in the presence of H2O2. On the basis of the excellent SERS properties and high peroxidase-like activity of the Ag-Cu2O/rGO nanocomposites, the catalytic oxidation of TMB can be monitored by SERS. This approach can detect H2O2 and glucose with high sensitivity and distinguish between diabetic and normal individuals using glucose levels in fingerprints. Our work provides direction for designing other SERS substrates with high catalytic activity and the potential for application in biosensing, forensic investigation, and medical diagnostics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据