4.8 Article

Defect Dominated Charge Transport and Fermi Level Pinning in MoS2/Metal Contacts

期刊

ACS APPLIED MATERIALS & INTERFACES
卷 9, 期 22, 页码 19278-19286

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsami.7b02739

关键词

MoS2; defects; conductive AFM; metal/MoS2 junction; Schottky barrier; Fermi level pinning; transition metal dichalcogenides; 2D semiconductor

资金

  1. Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO) [STW 11431]
  2. Stichting voor Fundamenteel Onderzoek der Materie (FOM) [FV157 14TWDO07]

向作者/读者索取更多资源

Understanding the electronic contact between molybdenum disulfide (MoS2) and metal electrodes is vital for the realization of future MoS2-based electronic devices. Natural MoS2 has the drawback of a high density of both metal and sulfur defects and impurities. We present evidence that subsurface metal-like defects with a density of similar to 10(11) cm(2) induce negative ionization of the outermost S atom complex. We investigate with high-spatial-resolution surface characterization techniques the effect of these defects on the local conductance of MoS2. Using metal nanocontacts (contact area < 6 nm(2)), we find that subsurface metal-like defects (and not S-vacancies) drastically decrease the metal/MoS2 Schottky barrier height as compared to that in the pristine regions. The magnitude of this decrease depends on the contact metal. The decrease of the Schottky barrier height is attributed to strong Fermi level pinning at the defects. Indeed, this is demonstrated in the measured pinning factor, which is equal to similar to 0.1 at defect locations and similar to 0.3 at pristine regions. Our findings are in good agreement with the theoretically predicted values. These defects provide low-resistance conduction paths in MoS2-based nanodevices and will play a prominent role as the device junction contact area decreases in size.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据