4.8 Article

Cage-Like Porous Carbon with Superhigh Activity and Br2-Complex-Entrapping Capability for Bromine-Based Flow Batteries

期刊

ADVANCED MATERIALS
卷 29, 期 22, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adma.201605815

关键词

-

资金

  1. China Natural Science Foundation [21476224, 21406219]
  2. Key project of Frontier Science, CAS [QYZDB-SSW-JSC032]
  3. National Youth Top-notch Talent Program
  4. project of DICP-LCL

向作者/读者索取更多资源

Bromine-based flow batteries receive wide attention in large-scale energy storage because of their attractive features, such as high energy density and low cost. However, the Br-2 diffusion and relatively low activity of Br-2/Brhinder their further application. Herein, a cage-like porous carbon (CPC) with specific pore structure combining superhigh activity and Br-2-complex-entrapping capability is designed and fabricated. According to the results of density functional theory (DFT) calculation, the pore size of the CPC (1.1 nm) is well designed between the size of Br-(4.83 angstrom), MEP+ (9.25 angstrom), and Br-2 complex (MEPBr3 12.40 angstrom), wherein Br-is oxidized to Br-2, which forms a Br-2 complex with the complexing agent immediately and is then entrapped in the cage via pore size exclusion. In addition, the active sites produced during the carbon dioxide activation process dramatically accelerate the reaction rate of Br-2/Br-. In this way, combining a high Br-2-entrapping-capability and high specific surface areas, the CPC shows very impressive performance. The zinc bromine flow battery assembled with the prepared CPC shows a Coulombic efficiency of 98% and an energy efficiency of 81% at the current density of 80 mA cm(-2), which are among the highest values ever reported.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据