3.8 Article

Evaluation of LoRa LPWAN Technology for Indoor Remote Health and Wellbeing Monitoring

出版社

SPRINGER
DOI: 10.1007/s10776-017-0341-8

关键词

IoT; Chirp spread spectrum; Spreading factor; RSSI; Coverage; Range; Power consumption

资金

  1. Finnish Funding Agency for Innovation (Tekes) through VIRPA C Project

向作者/读者索取更多资源

Long lifetime of a wireless sensor/actuator node, low transceiver chip cost and large coverage area are the main characteristics of the low power wide area network (LPWAN) technologies. These targets correlate well with the requirements imposed by the health and wellbeing applications of the digital age. Therefore, LPWANs can found their niche among traditional short range technologies for wireless body area networks, such as ZigBee, Bluetooth and ultra wideband. To check this hypothesis, in this work we investigate the indoor performance with one of the LPWAN technologies, named LoRa, by the means of empirical measurements. The measurements were conducted using the commercially available devices in the main campus of the University of Oulu, Finland. In order to obtain the comprehensive picture, the experiments were executed for the sensor nodes operating with various physical layer settings, i.e., using the different spreading factors, bandwidths and transmit powers. The obtained results indicate that with the largest spreading factor of 12 and 14 dBm transmit power, the whole campus area (570 m North to South and over 320 m East to West) can be covered by a single base station. The average measured packet success delivery ratio for this case was 96.7%, even with no acknowledgements and retransmissions used. The campus was covered also with lower spreading factors with 2 dBm transmit power, but considerably more packets were lost. For example with spreading factor 8, 13.1% of the transmitted packets were lost. Aside of this, we have investigated the power consumption of the LoRa compliant transceiver with different physical layer settings. The experiments conducted using the specially designed module show that based on the settings used, the amount of energy for sending the same amount of data may differ up to 200-fold. This calls for efficient selection of the communication mode to be used by the energy restricted devices and emphasizes the importance of enabling adaptive data rate control.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

3.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据