4.5 Article

Vacancy dissociation in body-centered cubic screw dislocation cores

期刊

COMPUTATIONAL MATERIALS SCIENCE
卷 135, 期 -, 页码 1-8

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.commatsci.2017.02.033

关键词

Dislocation; bcc metal; Vacancy; Molecular dynamics

向作者/读者索取更多资源

The interaction between screw dislocations and vacancies in body-centered cubic metals is investigated using molecular dynamics simulations. For thirteen different classical interatomic potentials, materials properties relating to vacancies, dislocations, and the interaction between the two are evaluated. The potentials include six for iron, two for molybdenum, and five for tantalum, and they are a mix of embedded atom method (EAM), modified embedded atom method (MEAM), and angular dependent potential (ADP) styles. A previously unknown behavior was identified during the interaction simulations. Out of the thirteen potentials investigated, ten predict a vacancy on the dislocation core to no longer remain as a discrete point defect, but rather to dissociate along the dislocation line. The structure of the dissociation is dependent on the potential and is characterized here. As this vacancy dissociation alters the core structure of the dislocation, it may prove to be a new mechanism for dislocation pinning and pipe diffusion.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据