4.7 Article

Separation of ten phosphorylated mono- and disaccharides using HILIC and ion-pairing interactions

期刊

ANALYTICA CHIMICA ACTA
卷 972, 期 -, 页码 102-110

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.aca.2017.03.029

关键词

Phosphorylated sugars; HILIC-MS; Methylphosphonic acid; Ion-pairing; BEH amide column

资金

  1. National Science Foundation [NSF CHE-1213845, IOS-1121626]
  2. USDA [NIFA-AFRS 2011-04015]

向作者/读者索取更多资源

Phosphorylated carbohydrates are indispensable cogs in several key metabolic wheels for all forms of life. Here, a straightforward liquid chromatography method coupled to mass spectrometry detection was developed for phosphorylated sugars. For separation of the targeted compounds, hydrophilic interaction chromatography (HILIC) was used with a bridged-ethylene hybrid amide column under alkaline conditions using triethylamine as a mobile phase modifier. Methylphosphonic acid was added to the aqueous mobile phase to reduce the tailing of compounds containing phosphate groups, which are known to interact with stainless steel components of the separation system. Under alkaline conditions and addition of methylphosphonic acid, the retention behavior can be attributed to both conventional HILIC mechanisms as well as ion-pairing interactions in the mobile phase. This hypothesis is supported by comparing the retention behavior of phosphorylated sugars and unmodified sugars. The HILIC method resolved eight biologically important phosphorylated sugars and thereby enables simultaneous detection and quantification of these compounds: fructose-1,6-bisphosphate, glucose-1-phosphate, glucose-6-phosphate, lactose-1-phosphate, mannose-6-phosphate, ribose-5-phosphate, sucrose-6-phosphate, and threhalose-6-phosphate. Fructose-1-phosphate and fructose-6-phosphate were not resolved but quantification of total fructose-phosphate is possible. (C) 2017 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据