4.6 Article

Wettability of vertically-oriented graphenes with different intersheet distances

期刊

RSC ADVANCES
卷 7, 期 5, 页码 2667-2675

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c6ra27428e

关键词

-

资金

  1. National Natural Science Foundation of China [51306159]
  2. Zhejiang Provincial Natural Science Foundation of China [LR17E060002]
  3. Foundation of National Excellent Doctoral Dissertation of China [201238]

向作者/读者索取更多资源

Vertically-oriented graphenes (VGs), i.e., graphene nanosheets arranged perpendicularly to the substrate surface, possess great promise as electrode materials for supercapacitors, mainly due to the vertical orientation on the substrate, open intersheet space, and exposed sharp edges. In this work, the dependence of VGs' wettability on their surface morphologies is investigated with experiments and numerical simulations. VGs with different intersheet distances are fabricated with plasma-enabled methods employing different plasma sources. The results show that the contact angle of VGs changes from 111 degrees to 34.5 degrees with a decreasing intersheet distance from similar to 306.2 to similar to 14.5 nm, indicating that the graphene intersheet distance plays an critical role on the wettability of VGs. Lattice Boltzmann (LB) simulation is further conducted to explore the mechanism on the flow and transport of electrolytes within VG channels. The behavior of electrolyte flow and its permeation into VG interiors is found to be strongly dominated by the capillary force across the air-liquid interface, while the gravity of the bulk electrolyte and the viscous force produced by the graphene surface could be ignored. A 3-fold improvement in the accessible surface area of VGs is achieved with reducing intersheet distance. Electrochemical results indicate that the hydrophilic VG electrode with a small intersheet distance of 14.5 nm exhibits a high specific capacitance (up to 147 F g(-1)) at a high cyclic voltammetry scan rate of 500 mV s(-1), due to the effective wetting and utilization of VG surfaces. The results of the current work could provide instructive information in the morphology optimization of VGs for high performance energy storage applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据