4.5 Article

Assessing theoretical uncertainties in fission barriers of superheavy nuclei

期刊

PHYSICAL REVIEW C
卷 95, 期 5, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevC.95.054324

关键词

-

资金

  1. Department of Energy National Nuclear Security Administration [DE-NA0002925]
  2. US Department of Energy, Office of Science, Office of Nuclear Physics [DE-SC0013037]
  3. DFG cluster of excellence Origin and Structure of the Universe

向作者/读者索取更多资源

Theoretical uncertainties in the predictions of inner fission barrier heights in superheavy elements have been investigated in a systematic way for a set of state-of-the-art covariant energy density functionals which represent major classes of the functionals used in covariant density functional theory. They differ in basic model assumptions and fitting protocols. Both systematic and statistical uncertainties have been quantified where the former turn out to be larger. Systematic uncertainties are substantial in superheavy elements and their behavior as a function of proton and neutron numbers contains a large random component. The benchmarking of the functionals to the experimental data on fission barriers in the actinides allows reduction of the systematic theoretical uncertainties for the inner fission barriers of unknown superheavy elements. However, even then, on average they increase on moving away from the region where benchmarking has been performed. In addition, a comparison with the results of nonrelativistic approaches is performed in order to define full systematic theoretical uncertainties over the state-of-the-art models. Even for the models benchmarked in the actinides, the difference in the inner fission barrier height of some superheavy elements reaches 5-6 MeV. This uncertainty in the fission barrier heights will translate into huge (many tens of the orders of magnitude) uncertainties in the spontaneous fission half-lives.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据