4.4 Article

Minimization of the Thiolactomycin Biosynthetic Pathway Reveals that the Cytochrome P450 Enzyme TlmF Is Required for Five-Membered Thiolactone Ring Formation

期刊

CHEMBIOCHEM
卷 18, 期 12, 页码 1072-1076

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/cbic.201700090

关键词

biosynthesis; fatty acid synthase inhibitor; Salinispora; thiolactone ring; thiotetronate antibiotics

资金

  1. National Institutes of Health (NIH) [R01-AI047818]

向作者/读者索取更多资源

Thiolactomycin (TLM) belongs to a class of rare and unique thiotetronate antibiotics that inhibit bacterial fatty acid synthesis. Although this group of natural product antibiotics was first discovered over 30 years ago, the study of TLM biosynthesis remains in its infancy. We recently discovered the biosynthetic gene cluster (BGC) for TLM from the marine bacterium Salinispora pacifica CNS-863. Here, we report the investigation of TLM biosynthetic logic through mutagenesis and comparative metabolic analyses. Our results revealed that only four genes (tlmF, tlmG, tlmH, and tlmI) are required for the construction of the characteristic -thiolactone skeleton of this class of antibiotics. We further showed that the cytochrome P450 TlmF does not directly participate in sulfur insertion and C-S bond formation chemistry but rather in the construction of the five-membered thiolactone ring as, upon its deletion, we observed the alternative production of the six-membered -thiolactomycin. Our findings pave the way for future biochemical investigation of the biosynthesis of this structurally unique group of thiotetronic acid natural products.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据