4.6 Article

Modified Bacteriophage S16 Long Tail Fiber Proteins for Rapid and Specific Immobilization and Detection of Salmonella Cells

期刊

出版社

AMER SOC MICROBIOLOGY
DOI: 10.1128/AEM.00277-17

关键词

detection; Salmonella

资金

  1. AiF/FEI, Bundesministerium fur Wirtschaft und Technologie, Berlin, Germany [16756 N]

向作者/读者索取更多资源

Bacteriophage-based assays and biosensors rival traditional antibodybased immunoassays for detection of low-level Salmonella contaminations. In this study, we harnessed the binding specificity of the long tail fiber (LTF) from bacteriophage S16 as an affinity molecule for the immobilization, enrichment, and detection of Salmonella. We demonstrate that paramagnetic beads (MBs) coated with recombinant gp37-gp38 LTF complexes (LTF-MBs) are highly effective tools for rapid affinity magnetic separation and enrichment of Salmonella. Within 45 min, the LTF-MBs consistently captured over 95% of Salmonella enterica serovar Typhimurium cells from suspensions containing from 10 to 10(5) CFU . ml(-1), and they yielded equivalent recovery rates (93% +/- 5%, n = 10) for other Salmonella strains tested. LTF-MBs also captured Salmonella cells from various food sample preenrichments, allowing the detection of initial contaminations of 1 to 10 CFU per 25 g or ml. While plating of bead-captured cells allowed ultrasensitive but time-consuming detection, the integration of LTF-based enrichment into a sandwich assay with horseradish peroxidaseconjugated LTF (HRP-LTF) as a detection probe produced a rapid and easy-to-use Salmonella detection assay. The novel enzyme-linked LTF assay (ELLTA) uses HRP-LTF to label bead-captured Salmonella cells for subsequent identification by HRP-catalyzed conversion of chromogenic 3,3', 5,5'-tetramethylbenzidine substrate. The color development was proportional for Salmonella concentrations between 10(2) and 107 CFU . ml(-1) as determined by spectrophotometric quantification. The ELLTA assay took 2 h to complete and detected as few as 10(2) CFU . ml(-1) S. Typhimurium cells. It positively identified 21 different Salmonella strains, with no cross-reactivity for other bacteria. In conclusion, the phage-based ELLTA represents a rapid, sensitive, and specific diagnostic assay that appears to be superior to other currently available tests. IMPORTANCE The incidence of foodborne diseases has increased over the years, resulting in major global public health issues. Conventional methods for pathogen detection can be laborious and expensive, and they require lengthy preenrichment steps. Rapid enrichment-based diagnostic assays, such as immunomagnetic separation, can reduce detection times while also remaining sensitive and specific. A critical component in these tests is implementing affinity molecules that retain the ability to specifically capture target pathogens over a wide range of in situ applications. The protein complex that forms the distal tip of the bacteriophage S16 long tail fiber is shown here to represent a highly sensitive affinity molecule for the specific enrichment and detection of Salmonella. Phage-encoded long tail fibers have huge potential for development as novel affinity molecules for robust and specific diagnostics of a vast spectrum of bacteria.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据