4.8 Article

Electroactive Ionic Soft Actuators with Monolithically Integrated Gold Nanocomposite Electrodes

期刊

ADVANCED MATERIALS
卷 29, 期 23, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adma.201606109

关键词

electroactive polymers; nanocomposites; smart materials; soft actuators; soft robotics

向作者/读者索取更多资源

Electroactive ionic gel/metal nanocomposites are produced by implanting supersonically accelerated neutral gold nanoparticles into a novel chemically crosslinked ion conductive soft polymer. The ionic gel consists of chemically crosslinked poly(acrylic acid) and polyacrylonitrile networks, blended with halloysite nanoclays and imidazolium-based ionic liquid. The material exhibits mechanical properties similar to that of elastomers (Young's modulus approximate to 0.35 MPa) together with high ionic conductivity. The fabrication of thin (approximate to 100 nm thick) nanostructured compliant electrodes by means of supersonic cluster beam implantation (SCBI) does not significantly alter the mechanical properties of the soft polymer and provides controlled electrical properties and large surface area for ions storage. SCBI is cost effective and suitable for the scaleup manufacturing of electroactive soft actuators. This study reports the high-strain electromechanical actuation performance of the novel ionic gel/metal nanocomposites in a low-voltage regime (from 0.1 to 5 V), with long-term stability up to 76 000 cycles with no electrode delamination or deterioration. The observed behavior is due to both the intrinsic features of the ionic gel (elasticity and ionic transport capability) and the electrical and morphological features of the electrodes, providing low specific resistance (<100 Omega cm(-2)), high electrochemical capacitance (approximate to mF g(-1)), and minimal mechanical stress at the polymer/metal composite interface upon deformation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据