4.8 Article

Three-Dimensional Porous Si and SiO2 with In Situ Decorated Carbon Nanotubes As Anode Materials for Li-ion Batteries

期刊

ACS APPLIED MATERIALS & INTERFACES
卷 9, 期 21, 页码 17807-17813

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsami.6b16644

关键词

chemical vapor deposition; carbon nanotubes; lithium-ion battery; magnesium vapor thermal reduction; silicon anode

资金

  1. 973program [2013CB934103]
  2. National Natural Science Foundation [21473040]
  3. Science & Technology Commission of Shanghai Municipality, China [08DZ2270500]

向作者/读者索取更多资源

A high-Capacity Si anode is always accompanied by very large volume expansion and structural collapse during the lithium-ion insertion/extraction process,To stabilize the structure of the Si anode, magnesium vapor thermal reduction has been used to synthesize porous Si and SiO2 (pSS) particles, followed by in situ growth of carbon nanotubes (CNTs) in pSS pores through a chemical vapor deposition (CVD) process. Field-emission scanning electron microscopy and high-resolution transmission electron microscopy have shown that the final product (pSS/CNTs) possesses adequate void space intertwined by uniformly distributed CNTs, and inactive silica in particle form. pSS/CNTs with such an elaborate structural :design-deliver improved electrochemical performance, with better coulombic efficiency (70% at the first cycle), cycling capability (1200 mAh g(-1) at 0.5 A g(-1) after 200 cycles), and rate capability (1984, 1654, 13850072, and 800 mAh g(-1) at current densities of 0.1, 0.2, 0.5, 1, and 2 A g(-1), respectively), compared to pSS and porous Si/CNTs. These merits of pSS/CNTs are attributed to the capability of void space to absorb the volume changes and that of the,silica to confine the excessive lithiation expansion of the Si anode. In addition, CNTs have interwound the partide,, leading to significant -enhancement of electionic conductivity before and after Si-anode pulverization. This simple and :scalable strategy makes it easy to expand the application to manufacturing other alloy: anode materials.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据