4.6 Article

Giant photoluminescence enhancement in monolayer WS2 by energy transfer from CsPbBr3 quantum dots

期刊

OPTICAL MATERIALS EXPRESS
卷 7, 期 4, 页码 1327-1334

出版社

OPTICAL SOC AMER
DOI: 10.1364/OME.7.001327

关键词

-

资金

  1. Scientific Researches Foundation of National University of Defense Technology [zk16-03-59]

向作者/读者索取更多资源

Monolayer (ML) transition metal dichalcogenides (TMDCs) are thought to be highly promising materials for the optoelectronic and nanophotonic applications. However, the low absorption cross section and photoluminescence (PL) quantum yield in such atomically thin layers restrict their applications. Considering that the energy transfer in a heterostructure can modulate TMDCs' optical properties, a type I heterostructure geometry comprising ML TMDCs and lead halide perovskite quantum dots (QDs) has the potential to overcome these shortcomings. In this work, spin-coating the CsPbBr3 QDs on ML WS2 results in similar to 12.7 times enhancement in the PL intensity of ML WS2 at 295K. This giant enhancement is attributed to the energy transfer process from CsPbBr3 QDs to WS2 with a similar to 40% energy transfer efficiency and similar to 2 x 10(8) s(-1) energy transfer rate. Besides, we observed that the internal quantum efficiency of ML WS2 is increased from 6.35% to 29.01%. The result demonstrates the feasibility of using perovskite QDs and ML TMDCs to form a type I heterostructure and improve the performance of the TMDC-based optoelectronic devices. (C) 2017 Optical Society of America

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据