4.3 Article

Disabled cell density sensing leads to dysregulated cholesterol synthesis in glioblastoma

期刊

ONCOTARGET
卷 8, 期 9, 页码 14860-14875

出版社

IMPACT JOURNALS LLC
DOI: 10.18632/oncotarget.14740

关键词

cholesterol metabolism; oxygen utilization; glioblastoma; pre-clinical cancer therapies; cell cycle

资金

  1. US National Cancer Institute Center for Cancer Research (NCI-CCR) Intramural Research Program [ZIA BC 011441]

向作者/读者索取更多资源

A hallmark of cellular transformation is the evasion of contact-dependent inhibition of growth. To find new therapeutic targets for glioblastoma, we looked for pathways that are inhibited by high cell density in astrocytes but not in glioma cells. Here we report that glioma cells have disabled the normal controls on cholesterol synthesis. At high cell density, astrocytes turn off cholesterol synthesis genes and have low cholesterol levels, but glioma cells keep this pathway on and maintain high cholesterol. Correspondingly, cholesterol pathway upregulation is associated with poor prognosis in glioblastoma patients. Densely-plated glioma cells increase oxygen consumption, aerobic glycolysis, and the pentose phosphate pathway to synthesize cholesterol, resulting in a decrease in reactive oxygen species, TCA cycle intermediates, and ATP. This constitutive cholesterol synthesis is controlled by the cell cycle, as it can be turned off by cyclin-dependent kinase inhibitors and it correlates with disabled cell cycle control though loss of p53 and RB. Finally, glioma cells, but not astrocytes, are sensitive to cholesterol synthesis inhibition downstream of the mevalonate pathway, suggesting that specifically targeting cholesterol synthesis might be an effective treatment for glioblastoma.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据