4.5 Article

Measurement of forward-backward multiplicity correlations in lead-lead, proton-lead, and proton-proton collisions with the ATLAS detector

期刊

PHYSICAL REVIEW C
卷 95, 期 6, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevC.95.064914

关键词

-

资金

  1. ANPCyT, Argentina
  2. YerPhI, Armenia
  3. ARC, Australia
  4. BMWFW, Austria
  5. FWF, Austria
  6. ANAS, Azerbaijan
  7. SSTC, Belarus
  8. CNPq, Brazil
  9. FAPESP, Brazil
  10. NSERC, Canada
  11. NRC, Canada
  12. CFI, Canada
  13. CERN
  14. CONICYT, Chile
  15. CAS, China
  16. MOST, China
  17. NSFC, China
  18. COLCIENCIAS, Colombia
  19. MSMT CR, Czech Republic
  20. MPO CR, Czech Republic
  21. VSC CR, Czech Republic
  22. DNRF, Denmark
  23. DNSRC, Denmark
  24. IN2P3-CNRS, France
  25. CEA-DSM/IRFU, France
  26. GNSF, Georgia
  27. BMBF, Germany
  28. HGF, Germany
  29. MPG, Germany
  30. GSRT, Greece
  31. RGC, China
  32. Hong Kong SAR, China
  33. ISF, Israel
  34. I-CORE, Israel
  35. Benoziyo Center, Israel
  36. INFN, Italy
  37. MEXT, Japan
  38. JSPS, Japan
  39. CNRST, Morocco
  40. FOM, Netherlands
  41. NWO, Netherlands
  42. RCN, Norway
  43. MNiSW, Poland
  44. NCN, Poland
  45. FCT, Portugal
  46. MNE/IFA, Romania
  47. MES of Russia, Russian Federation
  48. NRC KI, Russian Federation
  49. JINR
  50. MESTD, Serbia
  51. MSSR, Slovakia
  52. ARRS, Slovenia
  53. MIZS, Slovenia
  54. DST/NRF, South Africa
  55. MINECO, Spain
  56. SRC, Sweden
  57. Wallenberg Foundation, Sweden
  58. SERI, Switzerland
  59. SNSF, Switzerland
  60. Canton of Bern
  61. Canton of Geneva
  62. Canton of Switzerland
  63. MOST, Taiwan
  64. TAEK, Turkey
  65. STFC, United Kingdom
  66. DOE, United States of America
  67. NSF, United States of America
  68. BCKDF
  69. Canada Council, Canada
  70. CANARIE, Canada
  71. CRC, Canada
  72. Compute Canada, Canada
  73. FQRNT, Canada
  74. Ontario Innovation Trust, Canada
  75. EPLANET, European Union
  76. ERC, European Union
  77. Marie Sklodowska-Curie Actions, European Union
  78. Investissement d'Avenir Labex, France
  79. ANR, France
  80. Region Auvergne, France
  81. Fondation Partager le Savoir, France
  82. DFG, Germany
  83. AvH Foundation, Germany
  84. EU-ESF
  85. Greek NSRF
  86. BSF, Israel
  87. GIF, Israel
  88. Minerva, Israel
  89. BRF, Norway
  90. Generalitat de Catalunya, Spain
  91. Generalitat Valenciana, Spain
  92. Royal Society and Leverhulme Trust, United Kingdom
  93. FP7, European Union
  94. Horizon, European Union
  95. Investissement d'Avenir Idex, France
  96. Science and Technology Facilities Council [ST/I005846/1, PP/E000347/1, ST/H001093/1, 1366825, ST/K001361/1, ST/M006417/1, ST/N000234/1, ST/M001431/1, ST/H001093/2, ST/K003666/1, GRIDPP, ST/L001144/1, ST/N000420/1, ST/L005662/1] Funding Source: researchfish
  97. Direct For Mathematical & Physical Scien
  98. Division Of Physics [1305037, 1624739] Funding Source: National Science Foundation
  99. STFC [ST/L005662/1, ST/H001093/2, PP/E000347/1, ST/K003666/1, ST/M006417/1, ST/I005846/1, ST/H001093/1, ST/N000463/1, ST/N000420/1, ST/P002439/1, ST/K001361/1, ST/N000277/1, ST/N000234/1, ST/M001431/1, ST/L001144/1] Funding Source: UKRI

向作者/读者索取更多资源

Two-particle pseudorapidity correlations are measured in root s(NN) = 2.76 TeV Pb + Pb, root s(NN) = 5.02 TeV p+Pb, and root s = 13 TeV pp collisions at the Large Hadron Collider (LHC), with total integrated luminosities of approximately 7 mu b(-1), 28 nb(-1), and 65 nb(-1), respectively. The correlation function CN(eta(1),eta(2))is measured as a function of event multiplicity using charged particles in the pseudorapidity range |eta| < 2.4. The correlation function contains a significant short-range component, which is estimated and subtracted. After removal of the short-range component, the shape of the correlation function is described approximately by 1 + < a(1)(2)>(1/2) eta(1) eta(2) in all collision systems over the full multiplicity range. The values of < a(1)(2)>(1/2) are consistent for the opposite-charge pairs and same-charge pairs, and for the three collision systems at similar multiplicity. The values of < a(1)(2)>(1/2) and the magnitude of the short-range component both follow a power-law dependence on the event multiplicity. The short-range component in p + Pb collisions, after symmetrizing the proton and lead directions, is found to be smaller at a given eta than in pp collisions with comparable multiplicity.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据