4.7 Article

Adsorption behavior of carboxylated cellulose nanocrystal-polyethyleneimine composite for removal of Cr(VI) ions

期刊

APPLIED SURFACE SCIENCE
卷 408, 期 -, 页码 77-87

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.apsusc.2017.02.265

关键词

Adsorption; Cr(VI) removal; Carboxylated cellulose nanocrystal; Composite adsorbent; Polyethyleneimine

资金

  1. National Natural Science Foundation of China [21476212]
  2. Zhoushan Municipal Bureau of China [2015C41004]

向作者/读者索取更多资源

In this study, a composite adsorbent (CCN-PEI) composed of carboxylated cellulose nanocrystals (CCN) and polyethyleneimine (PEI) was prepared through an amidation reaction between the carboxyl groups of the CCN and the amine groups of the PEI. The adsorption performance of the CCN-PEI was tested by removing Cr(VI) ions from aqueous solutions. The physicochemical properties of the CCN and the Cr(VI) ion-loaded CCN-PEI were studied using scanning electron microscopy (SEM), transmission electron microscopy, Fourier-transform infrared spectroscopy, and X-ray photoelectron spectroscopy. To investigate the adsorption kinetics of Cr(VI) ions onto this newly developed CCN-PEI, we performed experiments under different adsorption conditions, by varying the contact time, solution pH, initial Cr(VI) ion concentration, and adsorption temperature. The prepared CCN-PEI exhibited an encouraging uptake capacity of 358.42 mg x g(-1). The adsorption process was fast: within the first 100 min, Cr(VI) ion adsorption onto the CCN-PEI was about 65%, and the adsorption equilibrium was reached within 250 min. Kinetics experiments indicated that the adsorption process could be described by a pseudo second-order kinetic model. Furthermore, our adsorption equilibrium data fit the Langmuir isotherms well. The calculated thermodynamic parameters, such as the free energy change (Delta G = -2.93 kJ x mol(-1)), enthalpy change (Delta H = -5.69 kJ x mol(-1)), and entropy change (Delta S= -9.14 kJ x mol(-1)), indicate that the adsorption of Cr(VI) ions onto CCN-PEI was a spontaneous exothermic process. Regeneration tests indicated that CCN-PEI showed good durability and good efficiency for repeated Cr(VI) adsorptions. Based on the results obtained in this work, it can be concluded that CCN-PEI is a potentially effective adsorbent for removing Cr(VI) ions from aqueous solutions. (C) 2017 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据