4.5 Article

Optical Characterization Studies of a Low-Cost Particle Sensor

期刊

AEROSOL AND AIR QUALITY RESEARCH
卷 17, 期 7, 页码 1691-1704

出版社

TAIWAN ASSOC AEROSOL RES-TAAR
DOI: 10.4209/aaqr.2017.02.0085

关键词

Sensor calibration; Calibration linearity; Number concentration; Mass concentration

资金

  1. MAGEEP at Washington University in St. Louis
  2. McDonnell International Academy at Washington University in St. Louis

向作者/读者索取更多资源

Compact low-cost sensors for measuring particulate matter (PM) concentrations are receiving significant attention as they can be used in larger numbers and in a distributed manner. Most low-cost particle sensors work on optical scattering measurements from the aerosol. To ensure accurate and reliable determination of PM mass concentrations, a relationship of the scattering signal to mass concentration should be established. The scattering signal depends on the aerosol size distributions and particle refractive index. A systematic calibration of a low-cost particle sensor (Sharp GP2Y1010AU0F) was carried out by both experimental and computational studies. Sodium chloride, silica, and sucrose aerosols were used as test cases with size distributions measured using a scanning mobility particle sizer (SMPS). The mass concentration was estimated using the measured size distribution and density of the particles. Calculations of the scattered light intensity were done using these measured size distributions and known refractive index of the particles. The calculated scattered light intensity showed better linearity with the sensor signal compared to the mass concentration. To obtain a more accurate mass concentration estimation, a model was developed to determine a calibration factor (K). K is not universal for all aerosols, but depends on the size distribution and refractive index. To improve accuracy in estimation of mass concentration, an expression for K as a function of geometric mean diameter, geometric standard deviation, and refractive index is proposed. This approach not only provides a more accurate estimation of PM concentration, but also provides an estimate of the aerosol number concentration.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据