4.3 Article

Valproic acid inhibits glioblastoma multiforme cell growth via paraoxonase 2 expression

期刊

ONCOTARGET
卷 8, 期 9, 页码 14666-14679

出版社

IMPACT JOURNALS LLC
DOI: 10.18632/oncotarget.14716

关键词

cell growth; glioblastoma multiforme; histone deacetylase; paraoxonase 2; valproic acid

资金

  1. Mackay Memorial Hospital [MMH-E 103001]

向作者/读者索取更多资源

We studied the potential mechanisms of valproic acid (VPA) in the treatment of glioblastoma multiforme (GBM). Using the human U87, GBM8401, and DBTRG-05MG GBM-derived cell lines, VPA at concentrations of 5 to 20 mM induced G2/M cell cycle arrest and increased the production of reactive oxygen species (ROS). Stress-related molecules such as paraoxonase 2 (PON2), cyclin B1, cdc2, and BclxL were downregulated, but p27, p21 and Bim were upregulated by VPA treatment. VPA response element on the PON2 promoter was localized at position -400/-1. PON2 protein expression was increased in GBM cells compared with normal brain tissue and there was a negative correlation between the expression of PON2 and Bim. These findings were confirmed by the public Bredel GBM microarray (Gene Expression Omnibus accession: GSE2223) and the Cancer Genome Atlas GBM microarray datasets. Overexpression of PON2 in GBM cells significantly decreased intracellular ROS levels, and PON2 expression was decreased after VPA stimulation compared with controls. Bim expression was significantly induced by VPA in GBM cells with PON2 silencing. These observations were further shown in the subcutaneous GBM8401 cell xenograft of BALB/c nude mice. Our results suggest that VPA reduces PON2 expression in GBM cells, which in turn increases ROS production and induces Bim production that inhibits cancer progression via the PON2-Bim cascade.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据