4.6 Article

Coupling of Crumpled-Type Novel MoS2 with CeO2 Nanoparticles: A Noble-Metal-Free p-n Heterojunction Composite for Visible Light Photocatalytic H2 Production

期刊

ACS OMEGA
卷 2, 期 7, 页码 3745-3753

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsomega.7b00492

关键词

-

资金

  1. American Chemical Society through ACS Authors Rewards

向作者/读者索取更多资源

In terms of solar hydrogen production, semiconductor-based photocatalysts via p-n heterojunctions play a key role in enhancing future hydrogen reservoir. The present work focuses on the successful synthesis and characterization of a novel p-MoS2/n-CeO2 heterojunction photocatalyst for excellent performance toward solar hydrogen production. The synthesis involves a simple in situ hydrothermal process by varying the wt % of MoS2. The various characterization techniques support the uniform distribution of CeO2 on the surface of crumpled MoS2 nanosheets, and the formation of p-n heterojunction is further confirmed by transmission electron microscopy and Mott-Schottky analysis. Throughout the experiment, it is demonstrated that 2 wt % MoS2 in the MoS2/CeO2 heterojunction photocatalyst exhibits the highest rate of hydrogen evolution with a photocurrent density of 721 mu A cm(-2). The enhanced photocatalytic activity is ascribed to the formation of the p-n heterojunction that provides an internal electric field to facilitate the photogenerated charge separation and transfer.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据