4.8 Article

Global optimization of microalgae-to-biodiesel chains with integrated cogasification combined cycle systems based on greenhouse gas emissions reductions

期刊

APPLIED ENERGY
卷 197, 期 -, 页码 63-82

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.apenergy.2017.03.117

关键词

Microalgae; Integrated cogasification combined cycle; Life cycle assessment; Heat integration; Global optimization

资金

  1. Ministry of Science and Technology, Taiwan [MOST 105-2221-E-006-239, 105-3113-E-006-003, 104-2221-E-006-227-MY3, 103-2221-E-006-190-MY3]
  2. Headquarters of University Advancement at National Cheng Kung University - Ministry of Education, Taiwan

向作者/读者索取更多资源

A microalgae-based energy system, which is a combination of different microalgae-to-biodiesel chains and an integrated cogasification combined cycle (ICGCC) system, is presented. To address the low environmental impacts, the electricity is generated from ICGCC to meet the load demand from the microalgae-to-biodiesel chains and the flue gas exits from ICGCC to meet the demand of growing algal culture. To achieve the microalgae-based energy system with minimum life cycle greenhouse gas (GHG) emissions, the first step is to develop the superstructure model based on GAMS, the second step is to use the optimal heat exchanger network to maximize the heat recovery of ICGCC, and the third step is to find the optimal combination of the microalgae-to-biodiesel chain and optimal operating conditions of ICGCC by solving the global optimization of nonconvex mixed-integer nonlinear programming (MINLP) problem. For the scope of well-to-tank (WIT), the optimal microalgae-based energy system reduces 16.80% greenhouse gas (GHG) emissions compared to the other reported microalgae-to-biodiesel chains. For the scope of well-to-wheel (WTW), the optimal microalgae-based energy system reduces 45.77% GHG emissions compared to the conventional diesel process. (C) 2017 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据