4.6 Article

pH and Thermal Dual-Responsive Nanoparticles for Controlled Drug Delivery with High Loading Content

期刊

ACS OMEGA
卷 2, 期 7, 页码 3399-3405

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsomega.7b00367

关键词

-

资金

  1. South Carolina SmartState Centers of Economic Excellence program
  2. USC NSF [CHE-1307319]
  3. Direct For Mathematical & Physical Scien
  4. Division Of Chemistry [1307319] Funding Source: National Science Foundation

向作者/读者索取更多资源

A pH and thermal dual-responsive nanocarrier with silica as the core and block copolymer composed of poly(methacrylic acid) (PMAA) and poly(N-isopropylacrylamide) (PNIPAM) as the shell was prepared by surfaceinitiated reversible addition-fragmentation chain-transfer (SI-RAFT) polymerization. The resulting SiO2-PMAA-b-PNIPAM particles dispersed individually in an aqueous solution at a high pH and a low temperature but reversibly agglomerated under acidic conditions or at elevated temperatures. These dual-responsive nanoparticles were used as carriers to deliver the model drug doxorubicin (DOX) with unusually high entrapment efficiency and loading content, which is due to the small size (15 nm), light weight of the cores, and high graft density (0.619 chains/nm(2)) achieved by SI-RAFT polymerization. The release rate was controlled by both the pH and temperature of the surrounding medium. Moreover, these particles selectively precipitated at acidic conditions with increased temperature, which may enhance their ability to accumulate at tumor sites. Cytotoxicity studies demonstrated that DOX-loaded nanoparticles are highly active against Hela cells and more effective than free DOX of an equivalent dose. A cellular uptake study revealed that SiO(2)(-)PMAA-b-PNIPAM nanoparticles could successfully deliver DOX molecules into the nuclei of Hela cells. All these features indicated that SiO2-PMAA-b-PNIPAM nanoparticles are a promising candidate for therapeutic applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据