4.6 Article

Microvesicles derived from normal and multiple myeloma bone marrow mesenchymal stem cells differentially modulate myeloma cells' phenotype and translation initiation

期刊

CARCINOGENESIS
卷 38, 期 7, 页码 708-716

出版社

OXFORD UNIV PRESS
DOI: 10.1093/carcin/bgx045

关键词

-

类别

资金

  1. Cancer Biology Research Center (CBRC) Dream Idea Grant, Tel Aviv University [0601242482]

向作者/读者索取更多资源

Multiple myeloma (MM) cells' interaction with the bone marrow (BM) microenvironment critically hinders disease therapy. Previously, we showed that MM co-culture with BM-mesenchymal stem cells (MSCs) caused co-modulation of translation initiation (TI) and cell phenotype and implicated secreted components, specifically microvesicles (MVs). Here, we studied the role of the BM-MSCs [normal donors (ND) and MM] secreted MVs in design of MM cells' phenotype, TI and signaling. BM-MSCs' MVs collected from BM-MSCs (MM/ND) cultures were applied to MM cell lines. After MVs uptake confirmation, the MM cells were assayed for viability, cell count and death, proliferation, migration, invasion, autophagy, TI status (factors, regulators, targets) and MAPKs activation. The interdependence of MAPKs, TI and autophagy was determined (inhibitors). ND-MSCs MVs' treated MM cells demonstrated a rapid (5 min) activation of MAPKs followed by a persistent decrease (1-24 h), while MM-MSCs MVs' treated cells demonstrated a rapid and continued (5 min-24 h) activation of MAPKs and TI (up arrow 25-200%, P < 0.05). Within 24 h, BM-MSCs MVs were internalized by MM cells evoking opposite responses according to MVs origin. ND-MSCs' MVs decreased viability, proliferation, migration and TI (down arrow 15-80%; P < 0.05), whereas MM-MSCs' MVs increased them (down arrow 10-250%, P < 0.05). Inhibition of MAPKs in MM-MSCs MVs treated MM cells decreased TI and inhibition of autophagy elevated cell death. These data demonstrate that BM-MSCs MVs have a fundamental effect on MM cells phenotype in accordance with normal or pathological source implemented via TI modulation. Future studies will aim to elucidate the involvement of MVs-MM receptor ligand interactions and cargo transfer in our model.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据