4.4 Article

An improved algorithm for narrow-band searches of continuous gravitational waves

期刊

CLASSICAL AND QUANTUM GRAVITY
卷 34, 期 13, 页码 -

出版社

IOP Publishing Ltd
DOI: 10.1088/1361-6382/aa744f

关键词

neutron star; gravitational waves; interferometric detectors

向作者/读者索取更多资源

Continuous gravitational waves signals, emitted by asymmetric spinning neutron stars, are among the main targets of current detectors like Advanced LIGO and Virgo. In the case of sources, like pulsars, whose rotational parameters are measured through electromagnetic observations, typical searches assume that the gravitational wave frequency is at a given known fixed ratio with respect to the star rotational frequency. For instance, for a neutron star rotating around one of its principal axis of inertia the gravitational signal frequency would be exactly two times the rotational frequency of the star. It is possible, however, that this assumption is wrong. This is why search algorithms able to take into account a possible small mismatch between the gravitational waves frequency and the frequency inferred from electromagnetic observations have been developed. In this paper we present an improved pipeline to perform such narrow-band searches for continuous gravitational waves from neutron stars, about three orders of magnitude faster than previous implementations. The algorithm that we have developed is based on the 5-vectors framework and is able to perform a fully coherent search over a frequency band of width O(Hertz) and for hundreds of spin-down values running a few hours on a standard workstation. This new algorithm opens the possibility of long coherence time searches for objects whose rotational parameters are highly uncertain as shown in the case study of the central compact object in the supernova remnant G353.6-0.7.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据