4.6 Article

Addressing electron-hole correlation in core excitations of solids: An all-electron many-body approach from first principles

期刊

PHYSICAL REVIEW B
卷 95, 期 15, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.95.155121

关键词

-

资金

  1. German Research Foundation (DFG) [SFB 658, SFB 951]
  2. Humboldt Research Track Scholarship of the Humboldt-Universitat Berlin
  3. Berliner Chancengleichheitsprogramm (BCP)
  4. IRIS Adlershof

向作者/读者索取更多资源

We present an ab initio study of core excitations of solid-state materials focusing on the role of electron-hole correlation. In the framework of an all-electron implementation of many-body perturbation theory into the exciting code, we investigate three different absorption edges of three materials, spanning a broad energy window, with transition energies between a few hundred to thousands of eV. Specifically, we consider excitations from the Ti K edge in rutile and anatase TiO2, from the Pb M-4 edge in PbI2, and from the Ca L-2,L-3 edge in CaO. We show that the electron-hole attraction rules x-ray absorption for deep core states when local fields play a minor role. On the other hand, the local-field effects introduced by the exchange interaction between the excited electron and the hole dominate excitation processes from shallower core levels, separated by a spin-orbit splitting of a few eV. Our approach yields absorption spectra in good agreement with available experimental data and allows for an in-depth analysis of the results, revealing the electronic contributions to the excitations, as well as their spatial distribution.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据