4.7 Article

Intercomparison and evaluation of spring phenology products using National Phenology Network and AmeriFlux observations in the contiguous United States

期刊

AGRICULTURAL AND FOREST METEOROLOGY
卷 242, 期 -, 页码 33-46

出版社

ELSEVIER
DOI: 10.1016/j.agrformet.2017.04.009

关键词

Remote sensing; First leaf dates; Land surface phenology; Green-up onset date; Evaluation

资金

  1. National Key Research and Development Program of China [2016YFB0501501]
  2. Chinese Academy of Sciences [XDB03030406]
  3. National Natural Science Foundation of China [41571423]
  4. Youth Innovation Promotion Association, Chinese Academy of Sciences [Y4YR1300QM]
  5. key Research Program of Frontier Sciences, CAS [QYZDB-SSW-DQC011]
  6. Director Foundation of Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences [Y6SJ020CX]

向作者/读者索取更多资源

Many remote sensing based spring phenology products have been developed to monitor and study vegetation phenology at regional and global scales. It is important to understand how these products perform relative to each other and to ground observations. In this study, we extracted spring green-up onset dates (GUD) over the contiguous United States (CONUS) from six major land surface phenology (LSP) products: (1) Moderate Resolution Imaging Spectroradiometer (MODIS) Land Cover Dynamics Phenology (MCD12Q2); (2) Vegetation Index and Phenology Multi-sensor Phenology (VIPPHENEVI2); (3) Global Long-Term Climate Modeling Grid Land Surface Phenology (CMGLSP); (4 and 5) North American Carbon Program (NACP) Phenology (MODO9Q1PEVI and MOD15PHN); and (6) USGS/EROS advanced very high resolution radiometer (AVHRR) phenology (AVHRRP). We characterized and compared the GUD data in these LSP products, and evaluated their accuracy using ground-based phenology observations [i.e., human observations of first leaf and sensor readings of gross primary productivity (GPP)] from the USA National Phenology Network (USA-NPN) and AmeriFlux. The results revealed the consistencies and discrepancies of GUD estimates among LSP products. Intercomparison of the six products indicated that the root mean square error (RMSE) of these products range from 17.8 days to 31.5 days, whereas AVHRRP GUD has the lowest correlation and largest RMSE (similar to 30 days) relative to other products. When compared to ground observations, GUD estimates in six LSP products generally have RMSE values of similar to 20 days and significant correlations (p < 0.001). For the products (MCD12Q2, AVHRRP, MODO9Q1PEVI, and MOD15PHN) available for comparisons in the short-term period (from 2001-2007), AVHRRP GUD presented relatively weaker correlations and a lower index of agreement (IOA), however, MCD12Q2 GUD showed overall slightly better consistencies with ground observations. In the two long-term products (CMGLSP and VIPPHENEVI2 from 1982-2013), CMGLSP exhibited stronger correlations, lower RMSE, and higher IOA with ground observations of the first leaf dates than VIPPHENEVI2 did. To our knowledge, our study provides the first comprehensive evaluation of phenology products using two independent ground-based datasets.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据