4.7 Article

Building biogenic beachrock: Visualizing microbially-mediated carbonate cement precipitation using XFM and a strontium tracer

期刊

CHEMICAL GEOLOGY
卷 465, 期 -, 页码 21-34

出版社

ELSEVIER
DOI: 10.1016/j.chemgeo.2017.05.019

关键词

Beachrock; Carbonate cement; Cyanobacteria; Sand cays; Microbialite; X-ray fluorescence microscopy; Strontium

资金

  1. Multi-modal Australian ScienceS Imaging and Visualisation Environment (MASSIVE)
  2. National Sciences and Engineering Research Council of Canada
  3. Carbon Management Canada [C390]

向作者/读者索取更多资源

The fate of reef islands is a topic of ongoing debate in the face of climate change-induced sea-level rise and increased cyclone intensity. Increased erosion and changes to the supply of reef-derived sediment may put sand reef cays at risk of dramatic morphological changes. These changes may have negative implications for the existence of reef cay environments, which host vital sea turtle and bird rookery habitats. Beachrock, consolidated carbonate beach sediment in the intertidal zone, forms naturally on many tropical beaches and reduces the erosion rates of these beaches when compared to unconsolidated sand. In spite of the critical role beachrock plays in stabilizing some reef cay shores, the method of beachrock formation is still incompletely understood. In this investigation, beachrock was synthesized using beach sand and beachrock samples from Heron Island (Great Barrier Reef, Australia) in aquarium experiments in which natural beachrock formation conditions were simulated. Beachrock was produced in two aquaria wherein the water chemistry was influenced by microorganisms derived from the natural beachrock 'inoculum', whereas no cementation occurred in an aquarium that lacked a microbial inoculum and was controlled only by physicochemical evapoconcentration. The new cements in the synthesized beachrock were analyzed using synchrotron-based X-ray fluorescence microscopy and were identified using a Sr-tracer added to the experimental seawater. The resulting precipitates cement sand grains together and contain abundant microfossils of the microorganisms on whose exopolymer they nucleated, demonstrating the fundamental role microbes play in beachrock formation. These results are of interest because beachrock could be utilized as a natural coastline stabilization strategy on sand reef cays, and in turn, protect the unique habitats reef islands support.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据