4.8 Article

Flexible Piezoelectric Touch Sensor by Alignment of Lead-Free Alkaline Niobate Microcubes in PDMS

期刊

ADVANCED FUNCTIONAL MATERIALS
卷 27, 期 24, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adfm.201700728

关键词

alkaline niobates; energy harvesting; functional composites; piezoelectric materials; touch sensors

资金

  1. European Commission, FP7 NMP program [310311]

向作者/读者索取更多资源

A highly sensitive, lead-free, and flexible piezoelectric touch sensor is reported based on composite films of alkaline niobate K0.485Na0.485Li0.03NbO3 (KNLN) powders aligned in a polydimethylsiloxane (PDMS) matrix. KNLN powder is fabricated by solid-state sintering and consists of microcubes. The particles are dispersed in uncured PDMS and oriented by application of an oscillating dielectrophoretic alignment field. The dielectric constant of the composite film is almost independent of the microstructure, while upon alignment the piezoelectric charge coefficient increases more than tenfold up to 17 pC N-1. A quantitative analysis shows that the origin is a reduction of the interparticle distance to under 1.0 mu m in the aligned bicontinuous KNLN chains. The temperature stable piezoelectric voltage coefficient exhibits a maximum value of 220 mV m N-1, at a volume fraction of only 10%. This state-of-the-art value outperforms bulk piezoelectric ceramics and composites with randomly dispersed particles, and is comparable to the values reported for the piezoelectric polymers polyvinylidenefluoride and its random copolymer with trifluoroethylene. Optimized composite films are incorporated in flexible piezoelectric touch sensors. The high sensitivity is analyzed and discussed. As the fabrication technology is straightforward and easy to implement, applications are foreseen in flexible electronics such as wireless sensor networks and biodiagnostics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据