4.6 Article

Tandem Diels-Alder Reaction of Dimethylfuran and Ethylene and Dehydration to para-Xylene Catalyzed by Zeotypic Lewis Acids

期刊

CHEMCATCHEM
卷 9, 期 13, 页码 2523-2535

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/cctc.201601584

关键词

Diels-Alder reaction; Lewis acid catalysis; microkinetic modelling; ONIOM; zeolites

资金

  1. Catalysis Center for Energy Innovation, an Energy Frontier Research Center - U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-SC0001004]
  2. Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231]

向作者/读者索取更多资源

The zeotypic Lewis acids Sn-BEA, Zr-BEA, and Ti-BEA have recently been reported to catalyze the synthesis of p-xylene by dehydrative aromatization of the Diels-Alder product between 2,5-dimethylfuran and ethylene. Although it has been shown that these Lewis acids can catalyze the dehydration of the Diels-Alder cycloadduct, the tandem scheme precludes decoupling of the two steps needed to infer whether these same catalysts can catalyze the Diels-Alder step. We have employed electronic structure calculations and microkinetic modelling to investigate the Diels-Alder aromatization of 2,5-dimethylfuran and ethylene to p-xylene over the Lewis-acidic zeotypes Sn-, Zr-, and Ti-BEA. We show that there is only minor catalysis of the Diels-Alder reaction, solely attributable to phenomena varying with the translational freedom allowed to the species inside the zeolite. Microkinetic modelling and sensitivity analysis of the computed rates show that the heterogeneous Diels-Alder pathway does not contribute to the overall rate, and that the homogeneous cycloaddition is rate-limiting at high acid site concentrations. Only the partially hydrolyzed (open) Lewis acid sites are found to be catalytically active, with moderately Bronsted-acidic silanol groups formed, which catalyze 2,5-dimethylfuran hydrolysis. Of the Lewis acids tested in this work, Zr-BEA and Sn-BEA have similar activities, in agreement with experiment, whereas Ti-BEA is found to be inactive, suggesting that the recently reported Ti-BEA activity was likely a result of Bronsted-acidic defect sites.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据