4.7 Article

Impairment of systemic DHA synthesis affects macrophage plasticity and polarization: implications for DHA supplementation during inflammation

期刊

CELLULAR AND MOLECULAR LIFE SCIENCES
卷 74, 期 15, 页码 2815-2826

出版社

SPRINGER BASEL AG
DOI: 10.1007/s00018-017-2498-9

关键词

Omega-3; Macrophages; Inflammation; Lipid metabolism

资金

  1. Swedish Research Council
  2. Swedish Cancer Foundation
  3. Fondazione Italiana Sclerosi Multipla (FISM) [2015/R/8]
  4. European Federation of Immunological Societies-Immunology Letters (EFIS-IL) fellowship

向作者/读者索取更多资源

Docosahexaenoic acid (DHA) is an omega-3 fatty acid obtained from the diet or synthesized from alpha-linolenic acid through the action of fatty acid elongases (ELOVL) and desaturases. DHA plays important roles in the central nervous system as well as in peripheral organs and is the precursor of several molecules that regulate resolution of inflammation. In the present study, we questioned whether impaired synthesis of DHA affected macrophage plasticity and polarization both in vitro and in vivo models. For this we investigated the activation status and inflammatory response of bone marrow-derived M1 and M2 macrophages obtained from mice deficient of Elovl2 (Elovl2(-/-)), a key enzyme for DHA synthesis in mammals. Although both wild type and Elovl2(-/-)mice were able to generate efficient M1 and M2 macrophages, M1 cells derived from Elovl2(-/-)mice showed an increased expression of key markers (iNOS, CD86 and MARCO) and cytokines (IL-6, IL-12 and IL-23). However, M2 macrophages exhibited upregulated M1-like markers like CD80, CD86 and IL-6, concomitantly with a downregulation of their signature marker CD206. These effects were counteracted in cells obtained from DHA-supplemented animals. Finally, white adipose tissue of Elovl2(-/-) mice presented an M1-like pro-inflammatory phenotype. Hence, impairment of systemic DHA synthesis delineates an alteration of M1/M2 macrophages both in vitro and in vivo, with M1 being hyperactive and more pro-inflammatory while M2 less protective, supporting the view that DHA has a key role in controlling the balance between pro-and anti-inflammatory processes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据