4.5 Article

Catch Bonds at T Cell Interfaces: Impact of Surface Reorganization and Membrane Fluctuations

期刊

BIOPHYSICAL JOURNAL
卷 113, 期 1, 页码 120-131

出版社

CELL PRESS
DOI: 10.1016/j.bpj.2017.05.023

关键词

-

资金

  1. National Science Foundation through NSF [DBI-1300426]
  2. University of Tennessee, Knoxville
  3. Div Of Biological Infrastructure
  4. Direct For Biological Sciences [1300426] Funding Source: National Science Foundation

向作者/读者索取更多资源

Catch bonds are characterized by average lifetimes that initially increase with increasing tensile force. Recently, they have been implicated in T cell activation, where small numbers of antigenic receptor-ligand bonds at a cell-cell interface can stimulate a T cell. Here, we use computational methods to investigate small numbers of bonds at the interface between two membranes. We characterize the time-dependent forces on the bonds in response to changes in the membrane shape and the organization of other surface molecules. We then determine the distributions of bond lifetimes using recent force-dependent lifetime data for T cell receptors bound to various ligands. Strong agonists, which exhibit catch bond behavior, are markedly more likely to remain intact than an antagonist whose average lifetime decreases with increasing force. Thermal fluctuations of the membrane shape enhance the decay of the average force on a bond, but also lead to fluctuations of the force. These fluctuations promote bond rupture, but the effect is buffered by catch bonds. When more than one bond is present, the bonds experience reduced average forces that depend on their relative positions, leading to changes in bond lifetimes. Our results highlight the importance of force-dependent binding kinetics when bonds experience time-dependent and fluctuating forces, as well as potential consequences of collective bond behavior relevant to T cell activation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据