4.8 Article

Intracellular HMGB1 as a novel tumor suppressor of pancreatic cancer

期刊

CELL RESEARCH
卷 27, 期 7, 页码 916-932

出版社

SPRINGERNATURE
DOI: 10.1038/cr.2017.51

关键词

HMGB1; RAGE; histone; K-Ras; pancreatic cancer

资金

  1. National Institutes of Health [R01CA160417, R01GM115366, R01CA181450]
  2. Pancreatic Cancer Action Network-AACR Career Development Award [13-20-25-TANG]
  3. American Cancer Society [RSG-16-014-01-CDD]
  4. National Natural Science Foundation of China [31671435]
  5. National Natural Science Foundation of Guangdong [2016A030308]
  6. Central Finance Grant of China [16056001]
  7. University of Pittsburgh Cancer Institute [P30CA047904]

向作者/读者索取更多资源

Pancreatic ductal adenocarcinoma (PDAC) driven by oncogenic K-Ras remains among the most lethal human cancers despite recent advances in modern medicine. The pathogenesis of PDAC is partly attributable to intrinsic chromosome instability and extrinsic inflammation activation. However, the molecular link between these two events in pancreatic tumorigenesis has not yet been fully established. Here, we show that intracellular high mobility group box 1 (HMGB1) remarkably suppresses oncogenic K-Ras-driven pancreatic tumorigenesis by inhibiting chromosome instability-mediated pro-inflammatory nucleosome release. Conditional genetic ablation of either single or both alleles of HMGB1 in the pancreas renders mice extremely sensitive to oncogenic K-Ras-driven initiation of precursor lesions at birth, including pancreatic intraepithelial neoplasms, intraductal papillary mucinous neoplasms, and mucinous cystic neoplasms. Loss of HMGB1 in the pancreas is associated with oxidative DNA damage and chromosomal instability characterized by chromosome rearrangements and telomere abnormalities. These lead to inflammatory nucleosome release and propagate K-Ras-driven pancreatic tumorigenesis. Extracellular nucleosomes promote interleukin 6 (IL-6) secretion by infiltrating macrophages/neutrophils and enhance oncogenic K-Ras signaling activation in pancreatic lesions. Neutralizing antibodies to IL-6 or histone H3 or knockout of the receptor for advanced glycation end products all limit K-Ras signaling activation, prevent cancer development and metastasis/invasion, and prolong animal survival in Pdx1-Cre; K-Ras(G12D/+); Hmgb1(-/-) mice. Pharmacological inhibition of HMGB1 loss by glycyrrhizin limits oncogenic K-Ras-driven tumorigenesis in mice under inflammatory conditions. Diminished nuclear and total cellular expression of HMGB1 in PDAC patients correlates with poor overall survival, supporting intracellular HMGB1 as a novel tumor suppressor with prognostic and therapeutic relevance in PDAC.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据