4.0 Article

SYNTHESIS AND CHARACTERIZATION OF SOME ABUNDANT NANOPARTICLES, THEIR ANTIMICROBIAL AND ENZYME INHIBITION ACTIVITY

期刊

出版社

AKADEMIAI KIADO ZRT
DOI: 10.1556/030.64.2017.004

关键词

nanoparticles; antimicrobial activity; urease; DNA polymerase

资金

  1. King Saud University, Vice Deanship of Research Chairs

向作者/读者索取更多资源

Although the antimicrobial activity of the engineered nanoparticles (NPs) is well known, the biochemical mechanisms underlying this activity are not clearly understood. Therefore, four NPs with the highest global production, namely SiO2, TiO2, ZnO, and Ag, were synthesized and characterized. The synthesized SiO2, TiO2, ZnO, and Ag NPs exhibit an average size of 11.12, 13.4, 35, and 50 nm, respectively. The antimicrobial activity of the synthesized NPs against bacteria and fungi were also determined. NPs-mediated inhibition of two very important enzymes, namely urease and DNA polymerase, is also reported. The synthesized NPs especially Ag and ZnO show significant antimicrobial activity against bacteria and fungi including methicillin-resistant Staphylococcus aureus even at low concentration. The DNA polymerase activity was inhibited at a very low concentration range of 2-4 mu g/ml, whereas the urease activity was inhibited at a high concentration range of 50-100 mu g/ml. Based on their ability to inhibit the urease and DNA polymerase, NPs can be arranged in the following order: Ag > ZnO > SiO2 > TiO2 and Ag > SiO2 > ZnO > TiO2, respectively. As the synthesized NPs inhibit bacterial growth and suppress the activity of urease and DNA polymerase, the use of these NPs to control pathogens is proposed.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.0
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据