4.7 Article

The effects effects of parametric changes in electropolishing process on surface properties of 316L stainless steel

期刊

APPLIED SURFACE SCIENCE
卷 410, 期 -, 页码 432-444

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.apsusc.2017.03.081

关键词

Electropolishing; Orthopedic; Impedance spectroscopy; Potentiodynamic; Corrosion biomaterials

资金

  1. Science of Advanced Materials program at Central Michigan University

向作者/读者索取更多资源

Corrosion resistance and biocompatibility of 316L stainless steel implants depend on the surface features and the nature of the passive film. The influence of electropolishing on the surface topography, surface free energy and surface chemistry was determined by atomic force microscopy, contact angle meter and X-ray photoelectron spectroscopy, respectively. The electropolishing of 316L stainless steel was conducted at the oxygen evolution potential (EPO) and below the oxygen evolution potential (EPBO). Compared to mechanically polished (MP) and EPO, the EPBO sample depicted lower surface roughness (Ra=6.07 nm) and smaller surface free energy (44.21 mJ/m(2)). The relatively lower corrosion rate (0.484 mpy) and smaller passive current density (0.619 mu A/cm(2)) as determined from cyclic polarization scans was found to be related with the presence of OH, Cr(III), Fe(0), Fe(II) and Fe(III) species at the surface. These species assured the existence of relatively uniform passive oxide film over EPBO surface. Moreover, the relatively large charge transfer (R-ct) and passive film resistance (R-f) registered by EPBO sample from impedance spectroscopy analysis confirmed its better electrochemical performance. The in vitro response of these polished samples toward MC3T3 pre-osteoblast cell proliferation was determined to be directly related with their surface and electrochemical properties. (C) 2017 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据