4.5 Article Proceedings Paper

Predicting surgical skill from the first N seconds of a task: value over task time using the isogony principle

出版社

SPRINGER HEIDELBERG
DOI: 10.1007/s11548-017-1606-5

关键词

Surgical skill evaluation; Computer aided decision; Tracking systems

资金

  1. Once of the Assistant Secretary of Defense for Health Affairs [W81XWH-15-2-0030]

向作者/读者索取更多资源

Purpose Most evaluations of surgical workflow or surgeon skill use simple, descriptive statistics (e.g., time) across whole procedures, thereby deemphasizing critical steps and potentially obscuring critical inefficiencies or skill deficiencies. In this work, we examine off-line, temporal clustering methods that chunk training procedures into clinically relevant surgical tasks or steps during robot-assisted surgery. Methods Features calculated from the isogony principle are used to train four common machine learning algorithms from dry-lab laparoscopic data gathered from three common training exercises. These models are used to predict the binary or ternary skill level of a surgeon. K-fold and leave-one-userout cross-validation are used to assess the accuracy of the generated models. Results It is shown that the proposed scalar features can be trained to create 2-class and 3-class classification models that map to fundamentals of laparoscopic surgery skill level with median 85 and 63% accuracy in cross-validation, respectively, for the targeted dataset. Also, it is shown that the 2-class models can discern class at 90% of best-case mean accuracy with only 8 s of data from the start of the task. Conclusion Novice and expert skill levels of unobserved trials can be discerned using a state vector machine trained with parameters based on the isogony principle. The accuracy of this classification comes within 90% of the classification accuracy from observing the full trial within 10 s of task initiation on average.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据