4.8 Article

Discriminating Residue Substitutions in a Single Protein Molecule Using a Sub-nanopore

期刊

ACS NANO
卷 11, 期 6, 页码 5440-5452

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsnano.6b08452

关键词

protein sequencing; protein discrimination; sub-nanopore; single molecule spectroscopy; atomic force microscopy; protein denaturation

资金

  1. National Science Foundation [DBI 1256052]
  2. Keough-Hesburgh Professorship
  3. Walther Cancer Foundation

向作者/读者索取更多资源

It is now possible to create, in a thin inorganic membrane, a single, sub-nanometer-diameter pore (i.e., a sub-nanopore) about the size of an amino acid residue. To explore the prospects for sequencing protein with it, measurements of the force and current were performed as two denatured histones, which differed by four amino acid residue substitutions, were impelled systematically through the sub-nanopore one at a time using an atomic force microscope. The force measurements revealed that once the denatured protein, stabilized by sodium dodecyl sulfate (SDS), translocated through the sub-nanopore, a disproportionately large force was required to pull it back. This was interpreted to mean that the SDS was cleaved from the protein during the translocation. The force measurements also exposed a dichotomy in the translocation kinetics: either the molecule slid nearly frictionlessly through the pore or it slipped-and-stuck. When it slid frictionlessly, regardless of whether the molecule was pulled N-terminus or C-terminus first through the pore, regular patterns were observed intermittently in the force and blockade current fluctuations that corresponded to the distance between stretched residues. Furthermore, the amplitude of the fluctuations in the current blockade were correlated with the occluded volume associated with the amino acid residues in the pore. Finally, a comparison of the patterns in the current fluctuations associated with the two practically identical histones supported the conclusion that a sub-nanopore was sensitive enough to discriminate amino acid substitutions in the sequence of a single protein molecule by measuring volumes of 0.1 nm(3) per read.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据