4.8 Article

Tunable Mechanochemistry of Lithium Battery Electrodes

期刊

ACS NANO
卷 11, 期 6, 页码 6243-6251

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsnano.7b02404

关键词

strain engineering; mechanochemistry; vanadium pentoxide; lithium insertion; nitinol; interface strain; density functional theory

资金

  1. NSF [CMMI 1400424, CBET 1403456]
  2. Vanderbilt University discovery grant program
  3. VINSE graduate fellowship

向作者/读者索取更多资源

The interplay between mechanical strains and battery electrochemistry, or the tunable mechanochemistry of batteries, remains an emerging research area with limited experimental progress. In this report, we demonstrate how elastic strains applied to vanadium pentoxide (V2O5), a widely studied cathode material for Li-ion batteries, can modulate the kinetics and energetics of lithium-ion intercalation. We utilize atomic layer deposition to coat V2O5 materials onto the surface of a shapememory superelastic NiTi alloy, which allows electrochemical assessment at a fixed and measurable level of elastic strain imposed on the V2O5, with strain state assessed through Raman spectroscopy and X-ray diffraction. Our results indicate modulation of electrochemical intercalation potentials by similar to 40 mV and an increase of the diffusion coefficient of lithium ions by up to 2.5-times with elastic prestrains of <2% imposed on the V2O5. These results are supported by density functional theory calculations and demonstrate how mechanics of nanomaterials can be used as a precise tool to strain engineer the electrochemical energy storage performance of battery materials.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据