4.1 Article

Semi-analytical technique for the solution of fractional Maxwell fluid

期刊

CANADIAN JOURNAL OF PHYSICS
卷 95, 期 5, 页码 472-478

出版社

CANADIAN SCIENCE PUBLISHING, NRC RESEARCH PRESS
DOI: 10.1139/cjp-2016-0817

关键词

Maxwell fluid; velocity function; Laplace transformation; linear shear stress; modified Bessel function

向作者/读者索取更多资源

In this work, the flow of a fractional Maxwell fluid is discussed. The velocity function and time-dependent shear stress of a Maxwell fluid with fractional derivatives are calculated. It is considered that the fluid in the infinitely long circular cylinder is moving with a velocity ft. The fluid in the infinitely long circular cylinder of radius R is initially at rest and at t = 0(+), because of shear, it instantly starts to move longitudinally. To obtain the solutions, we have employed Laplace transformation and modified Bessel equation. The solutions are in series form, which are expressed in terms of modified Bessel functions I-0(.) and I-1(.), and satisfy all given conditions. In this paper, Laplace inverse transformation has been calculated numerically by using MATLAB. The behavior of the following physical parameters on the flow are investigated: relaxation time, dynamic viscosity, kinematics viscosity, similarity parameters of fractional derivatives and radius of the circular cylinder. Finally, the impact of the fractional parameter and material elements is shown by graphical demonstration.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.1
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据