4.8 Article

Electroactive and High Dielectric Folic Acid/PVDF Composite Film Rooted Simplistic Organic Photovoltaic Self-Charging Energy Storage Cell with Superior Energy Density and Storage Capability

期刊

ACS APPLIED MATERIALS & INTERFACES
卷 9, 期 28, 页码 24198-24209

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsami.7b05540

关键词

electroactive PVDF; MWS interfacial polarization; dielectric relaxation; self-charging photovoltaics; energy storage

资金

  1. University Grants Commission (UGC), Government of India
  2. Department of Science and Technology, Government of India

向作者/读者索取更多资源

Herein we report a simplistic prototype approach to develop an organic photovoltaic self-charging energy storage cell (OPSESC) rooted with biopolymer folic acid (FA) modified high dielectric and electroactive beta crystal enriched poly(vinylidene fluoride) (PVDF) composite (PFA) thin film. Comprehensive and exhaustive characterizations of the synthesized PFA composite films validate the proper formation of beta-polymorphs in PVDF. Significant improvements of both beta-phase crystallization (F(beta) approximate to 71.4%) and dielectric constant (epsilon approximate to 218 at 20 Hz for PFA of 7.5 mass %) are the twosome realizations of our current study. Enhancement of beta-phase nucleation in the composites can be thought as a contribution of the strong interaction of the FA particles with the PVDF chains. Maxwell-Wagner-Sillars (MWS) interfacial polarization approves the establishment of thermally stable high dielectric values measured over a wide temperature spectrum. The optimized high dielectric and electroactive films are further employed as an active energy storage material in designing our device named as OPSESC. Self-charging under visible light irradiation without an external biasing electrical field and simultaneous remarkable self-storage of photogenerated electrical energy are the two foremost aptitudes and the spotlight of our present investigation. Our as fabricated device delivers an impressively high energy density of 7.84 mWh/g and an excellent specific capacitance of 61 F/g which is superior relative to the other photon induced two electrode organic self-charging energy storage devices reported so far. Our device also proves the realistic utility with good recycling capability by facilitating commercially available light emitting diode.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据