4.5 Article

The size-dependent analysis of multilayered microbridge systems under a moving load/mass based on the modified couple stress theory

期刊

EUROPEAN PHYSICAL JOURNAL PLUS
卷 132, 期 5, 页码 -

出版社

SPRINGER HEIDELBERG
DOI: 10.1140/epjp/i2017-11466-0

关键词

-

向作者/读者索取更多资源

In this study, the dynamical behavior of mutlilayered microbeam systems with respect to a moving load/ mass is investigated. The Winkler elastic foundation beam is used to model the coupling between layers and small-scale effects are modeled by modified couple stress theory. Equations of motion are achieved using Hamilton's principle and the solution process is proposed for a different number of layers. For double-and three-layered microbridge systems, an analytical solution is presented using Laplace transform and moreover, for higher-layered MMBS, a state space method is employed. A comprehensive parametric study is presented to clarify the effects of various parameters such as small-scale effect, coupling, the moving velocity, number of layers, etc. It is shown that material variation and scale effects changes the behavior of microbridge systems and have a significant effect on the dynamic deformation under a moving nanoparticle which could be used in understanding and designing more efficient nanostructures. Accordingly, with the brand new discussions on moving atoms, molecules, cells, nanocars, nanotrims, point loads on different nanosctructures using scanning tunneling microscopes (STM) and atomic force microscopes (AFM), this study could be a step forward in understanding, predicting and controlling such kind of behaviors.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据