4.7 Article

Modelling stellar proton event-induced particle radiation dose on close-in exoplanets

期刊

出版社

OXFORD UNIV PRESS
DOI: 10.1093/mnrasl/slw199

关键词

radiation mechanisms: non-thermal; planets and satellites: atmospheres; planets and satellites: magnetic fields; stars: flare

资金

  1. National Science Foundation [ACI-1053575]

向作者/读者索取更多资源

Kepler observations have uncovered the existence of a large number of close-in exoplanets and serendipitously of stellar superflares with emissions several orders of magnitude higher than those observed on the Sun. The interaction between the two and their implications on planetary habitability are of great interest to the community. Stellar proton events (SPEs) interact with planetary atmospheres, generate secondary particles and increase the radiation dose on the surface. This effect is amplified for close-in exoplanets and can be a serious threat to potential planetary life. Monte Carlo simulations are used to model the SPE-induced particle radiation dose on the surface of such exoplanets. The results show a wide range of surface radiation doses on planets in close-in configurations with varying atmospheric column depths, magnetic moments and orbital radii. It can be concluded that for close-in exoplanets with sizable atmospheres and magnetospheres, the radiation dose contributed by stellar superflares may not be high enough to sterilize a planet (for life as we know it) but can result in frequent extinction level events. In light of recent reports, the interaction of hard-spectrum SPEs with the atmosphere of Proxima Centauri b is modelled and their implications on its habitability are discussed.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据