4.8 Article

Studies on Bacterial Proteins Corona Interaction with Saponin Imprinted ZnO Nanohoneycombs and Their Toxic Responses

期刊

ACS APPLIED MATERIALS & INTERFACES
卷 7, 期 43, 页码 23848-23856

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsami.5b06617

关键词

ZnO nanohoneycombs; protein corona; interaction energies; molecular docking; microbial toxicity

资金

  1. Iranian Ministry of Science, Research and Technology

向作者/读者索取更多资源

Molecular imprinting generates robust, efficient, and highly mesoporous surfaces for biointeractions. Mechanistic interfacial interaction between the surface of core substrate and protein corona is crucial to understand the substantial microbial toxic responses at a nanoscale. In this study, we have focused on the mechanistic interactions between synthesized saponin imprinted zinc oxide nanohoneycombs (SIZnO NHs), average size 80-125 nm, surface area 20.27 m(2)/g, average pore density 0.23 pore/nm and number-average pore size 3.74 nm and proteins corona of bacteria. The produced SIZnO NHs as potential antifungal and antibacterial agents have been studied on Sclerotium rolfsii (S. rolfsii), Pythium debarynum (P. debarynum) and Escherichia coil (E. coli), Staphylococcus aureus (S. aureus), respectively. SIZnO NHs exhibited the highest antibacterial (similar to 50%) and antifungal (similar to 40%) activity against Gram-negative bacteria (E. coil) and fungus (P. debarynum), respectively at concentration of 0.1 mol. Scanning electron spectroscopy (SEM) observation showed that the ZnO NHs ruptured the cell wall of bacteria and internalized into the cell. The molecular docking studies were carried out using binding proteins present in the gram negative bacteria (lipopolysaccharide and lipocalin Blc) and gram positive bacteria (Staphylococcal Protein A, SpA). It was envisaged that the proteins present in the bacterial cell wall were found to interact and adsorb on the surface of SIZnO NHs thereby blocking the active sites of the proteins used for cell wall synthesis. The binding affinity and interaction energies were higher in the case of binding proteins present in gram negative bacteria as compared to that of gram positive bacteria. In addition, a kinetic mathematical model (KMM) was developed in MATLAB to predict the internalization in the bacterial cellular uptake of the ZnO NHs for better understanding of their controlled toxicity. The results obtained from KMM exhibited a good agreement with the experimental data. Exploration of mechanistic interactions, as well as the formation of bioconjugate of proteins and ZnO NHs would play a key role to interpret more complex biological systems in nature.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据