4.5 Article

Anisotropic finite element models for brain injury prediction: the sensitivity of axonal strain to white matter tract inter-subject variability

期刊

BIOMECHANICS AND MODELING IN MECHANOBIOLOGY
卷 16, 期 4, 页码 1269-1293

出版社

SPRINGER HEIDELBERG
DOI: 10.1007/s10237-017-0887-5

关键词

Axonal strain; Brain anisotropy; Traumatic brain injury; Finite element analysis

资金

  1. NIH Institutes and Centers [1U54MH091657]
  2. McDonnell Center for Systems Neuroscience at Washington University

向作者/读者索取更多资源

Computational models incorporating anisotropic features of brain tissue have become a valuable tool for studying the occurrence of traumatic brain injury. The tissue deformation in the direction of white matter tracts (axonal strain) was repeatedly shown to be an appropriate mechanical parameter to predict injury. However, when assessing the reliability of axonal strain to predict injury in a population, it is important to consider the predictor sensitivity to the biological inter-subject variability of the human brain. The present study investigated the axonal strain response of 485 white matter subject-specific anisotropic finite element models of the head subjected to the same loading conditions. It was observed that the biological variability affected the orientation of the preferential directions (coefficient of variation of 39.41% for the elevation angle-coefficient of variation of 29.31% for the azimuth angle) and the determination of the mechanical fiber alignment parameter in the model (gray matter volume 55.55-70.75%). The magnitude of the maximum axonal strain showed coefficients of variation of 11.91%. On the contrary, the localization of the maximum axonal strain was consistent: the peak of strain was typically located in a 2 cm(3) volume of the brain. For a sport concussive event, the predictor was capable of discerning between non-injurious and concussed populations in several areas of the brain. It was concluded that, despite its sensitivity to biological variability, axonal strain is an appropriate mechanical parameter to predict traumatic brain injury.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据