4.5 Article

Viscosity and haemodynamics in a late gestation rat feto-placental arterial network

期刊

BIOMECHANICS AND MODELING IN MECHANOBIOLOGY
卷 16, 期 4, 页码 1361-1372

出版社

SPRINGER HEIDELBERG
DOI: 10.1007/s10237-017-0892-8

关键词

Feto-placental; Haemodynamics; Computational fluid dynamics; Wall shear stress

资金

  1. National Health and Medical Research Council [APP1063986, APP1083752]
  2. Raine Medical Research Foundation
  3. William and Marlene Schrader Postgraduate Scholarship

向作者/读者索取更多资源

The placenta is a transient organ which develops during pregnancy to provide haemotrophic support for healthy fetal growth and development. Fundamental to its function is the healthy development of vascular trees in the feto-placental arterial network. Despite the strong association of haemodynamics with vascular remodelling mechanisms, there is a lack of computational haemodynamic data that may improve our understanding of feto-placental physiology. The aim of this work was to create a comprehensive 3D computational fluid dynamics model of a substructure of the rat feto-placental arterial network and investigate the influence of viscosity on wall shear stress (WSS). Late gestation rat feto-placental arteries were perfused with radiopaque Microfil and scanned via micro-computed tomography to capture the feto-placental arterial geometry in 3D. A detailed description of rat fetal blood viscosity parameters was developed, and three different approaches to feto-placental haemodynamics were simulated in 3D using the finite volume method: Newtonian model, non-Newtonian Carreau-Yasuda model and FAhr'us-Lindqvist effect model. Significant variability in WSS was observed between different viscosity models. The physiologically-realistic simulations using the FAhr'us-Lindqvist effect and rat fetal blood estimates of viscosity revealed detailed patterns of WSS throughout the arterial network. We found WSS gradients at bifurcation regions, which may contribute to vessel enlargement, and sprouting and pruning during angiogenesis. This simulation of feto-placental haemodynamics shows the heterogeneous WSS distribution throughout the network and demonstrates the ability to determine physiologically-relevant WSS magnitudes, patterns and gradients. This model will help advance our understanding of vascular physiology and remodelling in the feto-placental network.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据