4.6 Article

Piezomagnetism as a counterpart of the magnetovolume effect in magnetically frustrated Mn-based antiperovskite nitrides

期刊

PHYSICAL REVIEW B
卷 96, 期 2, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.96.024451

关键词

-

资金

  1. European Union Seventh Framework Programme (FP7) [310748]

向作者/读者索取更多资源

Electric-field control of magnetization promises to substantially enhance the energy efficiency of device applications ranging from data storage to solid-state cooling. However, the intrinsic linear magnetoelectric effect is typically small in bulk materials. In thin films, electric-field tuning of spin-orbit-interaction phenomena (e.g., magnetocrystalline anisotropy) has been reported to achieve a partial control of the magnetic state. Here we explore the piezomagnetic effect (PME), driven by frustrated exchange interactions, which can induce a net magnetization in an antiferromagnet and reverse its direction via elastic strain generated piezoelectrically. Our ab initio study of PME in Mn-based antiperovskite nitrides identified an extraordinarily large PME in Mn3SnN available at room temperature. We explain the magnitude of PME based on features of the electronic structure and show an inverse proportionality between the simulated zero-temperature PME and the magnetovolume effect at the magnetic (Neel) transition measured by Takenaka et al. in nine antiferromagnetic Mn(3)AN systems.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据